返回

学霸的黑科技系统

首页
关灯
护眼
字体:
第1087章 motive理论
上一章 目录 下一页
『章节错误,点此报送』
  图书馆的活动室。

  面对着写了一半的白板,陆舟收回了手中的记号笔,退后两步看着白板说道。

  “……想要解决代数和几何的统一性问题,就必须将‘数’和‘形’从一般的表述形式中剥离出来,在抽象的概念中寻找它们之间的共性。”

  站在陆舟的旁边,陈阳思忖了片刻之后,忽然开口问道。

  “朗兰兹纲领?”

  “不只是朗兰兹纲领,”陆舟认真说道,“还有motive理论,想要解决这个问题,我们必须弄清楚不同上同调理论彼此之间的联系。”

  事实上,这个问题是一个很大的范畴。

  将“不同上同调理论彼此之间的联系”这一问题不断细分下去,甚至能够分裂成数万乃至数百万个悬而未决的猜想,或者说数学命题。wap.ŚŤЖŚŴ.ČŐM

  代数几何学领域悬而未决的难题——霍奇猜想,便是其中之一,也是最出名的一个。

  然而有意思的是,虽然存在如此之多极其困难的猜想阻挡在前面,但论证motive理论却并不需要将这些猜想全部解决。

  双方的关系就好像黎曼猜想和黎曼猜想在狄利克雷函数上的推广一样若即若离。

  “……表面上看我们研究的是一个复分析问题,但事实上它同时也是偏微分方程、代数几何、拓扑学的问题。”

  看着面前的白板,陆舟继续说道,“站在战略的高度,我们需要在数和形的抽象形式上找到一种可以关联两者的因子。在战术上,我们可以从kunneth公式、poincare对偶等等一系列上同调理论的共性入手,以及我先前向你展示的L流形在复平面上的应用方法。”

  说着,陆舟将视线投向了站在他旁边的陈阳。

  “我需要一个理论,它能够发扬一维上同调的经典理论——也就是曲线的Jacobi簇理论和Abel簇理论的成功之处,以便于所有维数的上同调。”

  “基于这个理论,我们可以研究motive理论中的直和分解,使H(v)与不可约motive相关联。”

  “原本这一块我是打算自己去做的,但还有跟重要的部分值得我去完成。我打算在今年之内搞定大统一理论,这一块就交给你了。”

  面对陆舟的拜托,陈阳沉思了一会儿,开口说道。

  “听起来
第1087章 motive理论(1/3).继续阅读
《 加入书签,方便阅读 》
上一章 目录 下一页